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Nonlinear Finite Element Analysis of Composite Shell
Under Impact

Chongdu Cho", Guiping Zhao, Chang Boo Kim
School of Mechanical, Aerospace, and Automation Engineering lnha University

Large deflection dynamic responses of laminated composite cylindrical shells under impact
are analyzed by the geometrically nonlinear finite element method based on a generalized

Sander's shell theory with the first order transverse shear deformation and the von-Karman
large det1ection assumption. A modified indentation law with inelastic indentation is employed

tor the contact force. The nonlinear finite element equations of motion of shell and an impactor
along with the contact laws are solved numerically using Newmark's time marching integration
scheme in conjunction with Akay type successive iteration in each step. The ply failure region

of the laminated shell is estimated using the Tsai- Wu quadratic interaction criteria. Numerical
results, including the contact force histories, deflections and strains are presented and compared
with the ones by linear analysis. The effect of the radius of curvature on the composite shell
behaviors is investigated and discussed.
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1. Introduction

Composite laminates are notorious lor impact

damage. The impact problem of composite
laminated plates has been studied extensively in
the past decade (Shivakumar, Elber, and IlIg,

1985; Aggour and Sun, 1988; Choi and Hong,
1994; Wu and Yen, 1994). In practical applica­

tions, most of the composite laminates are not
generally flat; but curved in geometry with the
increased applications in aerospace, automobile,

and petrochemical industries. However, there are
relatively few investigations that studied damage

as well as the dynamic response of a composite
thin shell subjected to impact load. Recently,
Matemilola and Strange (1997) reported an ana­

lytical solution for the impact response of a sim­
ply supported anisotropic composite cylinder.
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Gong, Toh, and Shim (1994) proposed a spring­
mass model to estimate the contact force of an
open curved shell under impact; they expressed a
contact force as a function of the material prop­

erties and the mass of impactor and laminated
shell as well as the initial velocity of the impactor.
Bachrach and Hansen (1988) developed a mixed

finite element method for a composite cylinder
subjected to impact. The displacements of a pro­
jectile and cylinder are approximated using the

Wilson-method and the finite difference method,
respectively, to solve the non-linear equations
arising from contact effects. Cho and Zhao

(1999) investigated the dynamic response and
damage of a composite shell under low velocity

impact. However, all of the works cited above are
based on the small-deformation theory. This the­
ory is valid for assumed displacements much
smaller than the thickness of the shell. However,

when the impact velocity becomes relatively large
such that the displacements at the impact point
are of the order of the shell thickness, the small­

deformation theory is not adequate and a large­
det1ection assumption has to be imposed.

In this paper, the large deflection dynamic
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Fig. 1 Geometry of the composite cylindrical shell
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where

where u»; vo, and io« are the mid-surface dis­

placements corresponding to the x, e, and z

directions, respectively; <Px and <Po are indepen­

dent rotations of the cross-sections about the a
and x axes respectively; and R is the radius of the

cylindrical shell.

Using the von Karman large deflection assump­

tions (Reddy, 1997), the strain components can

be expressed by

Consider a thin laminated composite cylindri­

cal shell that is made of homogeneous orthotropic

layers. An orthogonal curvilinear coordinate sys­

tem (x, 8, z) is taken along the middle surface of

the shell such that the x-axis is along the longitu­

dinal axis of cylindrical shell, the a-axis is in the

hoop direction and z-axis perpendicular to the

middle surface (Fig. I). The cylindrical shell has

a radius of curvature R and a total thickness h. In

the extended Sander's shell theory (Rajagopalan,

1993) , displacement components (zz. u, w) which

include transverse shear deformation at a point

2. Geometrical Nonlinear Formulation
of Composite Shell

responses of laminated composite cylindrical

shells under impact are investigated using the

geometrical nonlinear finite element method. A

nine-node iso-parametric quadrilateral element

based on the Sander's shell theory and the von

Karman large deflection assumption is developed

for the shell; and the first order transverse shear

deformation is considered. In order to calculate

the contact force during impact, a modified inden­

tation law (Tan and Sun, 1985) that takes into

account the effect of permanent indentation is

adapted to a finite element program. The non­

linear finite element equations are solved using

the Newmark constant acceleration algorithm in

conjunction with Akay (1980) type successive

iteration within each step. To treat nonlinear

terms efficiently during the iteration, an iterative

scheme with a constant coefficient matrix is em­

ployed. The ply damage region of the laminated

shell is estimated using the Tsai-Wu criteria.

Numerical results, including the contact force

history, deflection and strain of shell are

obtained. The results of nonlinear analysis for the

different radii of curvature are compared with the

linear analysis results, which enables us to recog­

nize when the small deflection theory may become

inadequate and the large deflection theory should

be used to give more accurate numerical estima­

tion. The effect of the radii of curvature on the

composite shell behaviors is also investigated and

discussed.
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laminated cylindrical shell mass matrix; 0 means
the variation; {u} is the generalized displacements
defined in Eq. (10)

(10)

; mi. uu, and Wi are the mass, displacement, and
acceleration of the impactor, respectively.
F is the contact force between the shell and
impactor; and a is the indentation given by

a=wi(t+Llt) -Ws(Xo, eo, t+Llt) (11)

in which ui, is the shell deflection at the impact

point (xo, eo)·

3. Finite Element Formulation

The Finite element type used here is a nine­
node iso-parametric quadrilateral element. Shell
displacements in the element are interpolated by

are the in-plane strains, bending strains, trans­
verse shear strains and nonlinear parts of the in­
plane strains, respectively.

Integration of the stresses (N, Q) and the
stresses multiplied by z across the thickness of the
cylindrical shell (M) results in the constitutive
equation for a laminated shell (Zhao, 2000)

n
{u}= ~Ni[I]{Ll;}

i=l
(12)

( 13)

(7)

or symbolically,

{a}= [D] ({co}+{cd) = [LJ]{c} (8)

In Eqs. (7) and (8), n; Mi and Q, are the so
called in-plane stress resultants, stress moments,
and transverse shear forces, respectively. The
coefficients Au, B u, Di, and Hi, are the respective
in-plane, bending-in-plane, bending and thick­
ness shear stiffness; {co} and {s.} are the general­
ized linear and nonlinear strains, respectively.

We shall consider a system consisting of a
cylindrical shell and an impactor and applying
the principle of virtual work to the system at time

t +Llt to then develop the finite element equa­
tions:

where N, are shape functions; {Lli}T = [UOi, VOi,
WOi, 1>xi, 1>0;] is the nodal displacement vector;
and n is the number of nodes per an element.
Substitution of Eq. (12) into Eq. (2) gives gener­
alized strains [s} and their variations {oc}:

I
{c}= ([Bo]+T[Bd){Ll}

{oc}= ([Bo] + [Bd){OLJ}

where [Bo ] and [BL ] are the linear and non­
linear strain transformation matrices, respectively
(see appendix for definitions). We shall note the
matrix [Bd depends linearly on the vector {Ll}.
Substituting Eqs. (10) and (13) into Eq. (9) with

{oLl} and OWi arbitrary, Eq. (9) can be par­
titioned into two sets of equations

miivi+F=O (14)
[M] {LI} + [Ko] {Ll} + [KL (Ll) ] {Ll} = {F} (15)

where A o is the original shell area; [p] is the

J{ou}T[P]{ii}dA + !{oc}T{O"}dA
Ao Ao

+owimdiJi+Foa=O (9)

where [M] is the mass matrix of the laminated
cylindrical shell, [Ko] the linear stiffness matrix,
{F} contact force vector, and [KL (LJ)] the gener­
alized, unsymmetrical, nonlinear stiffness matrix
given by
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[KL (Ll) ] = f( f[Bo] T [D] [R]
Ao

+ [BdT[D] [Bo]

+f[BdT[D] [Bd) dA (16)

where the coefficient 13 and the critical indenta­

tion aCT are approximately 0.094 and 1.667X 10-2

em, respectively, for graphite/epoxy composites.

5. Solution Algorithm

4. Contact Force

The contact force between the impactor and the
cylindrical shell is considered to be a point load
in the analysis. Upon loading the contact force is
determined by applying the modified version of
the Herzian contact law (Tan and Sun, 1985).
The contact force F is related to indentation

depth a by

[K]{Ll}it~t = Llt {F}~+Jt+ [M] {b}t

Llt2
.-T[KL (Ll)] t+Jt (20)

[K] = Llt [Ko] + [M]

{b}t ={Ll} t +Llt{J}t + Llt {Li}t

where

In Eq. (20), i is the number of iterations within
a time step. Successive iterations have to continue
until a solution of the desired accuracy is reached
in each time step. During the iteration process, the
modified load vector on the right-hand side of
Eq. (20) must be updated. On the other hand, the
decomposition of the coefficient matrix needs to

be done only at the initial time step. The same
solution scheme is used for solving the equation
for the motion of the impactor, i. e. Eq. (14). In

In order to efficiently solve the nonlinear
dynamics of Eq. (15), an iterative scheme with a

constant coefficient matrix proposed by Akay is
employed. Akay (1980) demonstrated both the
efficiency and accuracy of the proposed algorith­

m. Chen and Sun (1985) also employed this
scheme in studying the nonlinear transient behav­
ior of composite laminates. In their studies, accu­
rate results could be obtained with relatively

coarse meshes and large time increments,
although the Newmark's scheme would lose its

unconditional stability.
In Akay's scheme, the nonlinear matrix [KL

(L1)] in Eq. (15) is moved to the right-hand side
of the equation and considered as a given "force"
vector which depends upon the displacements
computed in the previous iteration within each
time step. The Nemark constant acceleration
method is used for solving the time-dependent
equations. Using this scheme, Eq. (15) can be
expressed in iterative form at each time step by

(17)

(19)

For the numerical evaluation of the stiffness

matrix in Eq. (15) without shear locking, selec­
tive reduced integration method is employed. The

3 X 3 Gaussian rule is used to compute the stiff­
ness coefficients for the in-plane and bending
deformation while the reduced 2 X 2 rule is used
to evaluate the terms associated with transverse

shear deformation.
The shell and impactor motion is analyzed

using Eqs. (14) and (15) with the contact force

vector {F} updated.

where x is the modified constant of the Hertz
contact theory (Willis, 1966; Yang and Sun,
1982). For the indentor of 1.27cm diameter, the

contact coefficient x is found to be 1.413X 106 N/
em':". Upon unloading and re-loading the contact

force is determined by (Crook, 1952; Yang and
Sun, 1982)

F= F«[(a- ao) / (am - (10) ] q (18)

where q is a constant power: during unloading
and re-loading q is 2.5 and 1.5, respectively; F«
is the maximum contact force just before unload­

ing; am is the indentation corresponding to F m ;
and ao is the permanent indentation during this
loading-unloading process. The permanent
indentation aD is determined from the following

expressions
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6. Failure Criterion

F1<51+ Fz<5z+ F ll<5/+ Fzz<5l+ F66<562

+2FI2<51<51~ I (21)

where <51' <52' and <56 are normal and shear stress

components along principal material axes. The

following strength parameters account for the

lamina failure

E,=120 GPa E2=7.9GPa
G'2=G23=G13=5.5 GPa
p= 1.58 X lO-sN s2/cm"

Table 1 Elastic Properties of a Graphite/epoxy

Lamina (Chen and Sun, 1985)

in the previous section has been implemented into

a nonlinear finite element program. This program

was utilized to analyze the problems; and the

results are discussed as follows.

The composite cylindrical shell in the problems

has the dimensions of 15.24 X 10.16 X 0.269 em,

The shell is made of graphite/epoxy laminated

with a stacking sequence of [oo/4SO/0o/-45 % 0]
25' The target shell is hinge supported and immov­

able along the four edges. Three different radii of

curvature R, i. e., 10 em, 20 em and 50 em are

considered in the analysis. The cylindrical shell is

assumed to be impacted perpendicularly at the

center by a steel impactor with a mass of 8.53 X

10-3 Ns2/ m and a contacting spherical cap within

a diameter of 12.7 mm. The impact velocity is set

at 30m/s. From symmetry a quarter of the shell is

modeled by a 4 X 4 mesh. The material properties

and strengths are listed in Table I.

The validity of the impact response of a cylin­

drical shell is first checked by comparing the

contact force induced during impact with those

for a plate. This was done by letting the radius of

curvature of the cylindrical shell be very large

(say 1015 ern) for a plate. Figure 2 shows the

comparison of the impact force histories obtained

by using the large deformation for shell and plate

(Chen and Sun, 1985). It is seen that there is

good agreement between the two contact force

histories.

The impact force histories for shells with differ­

ent radii of curvature under the same impact

condition are shown in Fig. 3. The results

obtained using the linear small-deformation the­

ory are also shown as dotted line for easy compar­

ison. There is no significant difference for maxi­

mum impact force between the large (nonlinear)

(22)

0.5

I
r; X+X

I I
F 1 = X+ - X-

I
F22= Y+ y-

I I
F2 = Y+- y-

I
F66=SZ

addition, the contact force has to be computed

before the next iteration is carried out. Therefore,

Eqs. (14) and (20) must be solved simultaneous­

ly with Eqs. (II) as well as (17) and (18).

Ply stresses are calculated and the shell is

examined for failure in each node of elements

using the Tsai-Wu failure criteria. In the Tsai

- Wu general quadratic interaction criteria the

failure surface in the stress space is described by

tensor polynomial. Failure (Gibson, 1994) is

assumed when

where X+ and X- are the longitudinal tensile

and compressive strengths of lamina; Y+ and y­
are the transverse strengths of lamina; and S is

the in-plane shear strength.

~ The terms on the left-hand side of Eq. (20) are

regarded as a failure index. The failure is assumed

to occur when the stress states of some point are

estimated to exceed the allowable value. On the

other words, failure occurs if the failure index of

the point is ~ I.

7. Numerical Results and Discussion

The formulation of the shell element discussed

X+= 1448 (MPa)

Y+=44.8 (MPa)

S=62.1 (MPa)

X-= 1448 (MPa)

Y-=248 (MPa)
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Contact force histories, R=50cm
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Fig. 4 Displacements of the impactor and shell
(R=5Ocm)

and small (linear) deformation theories except

for a shorter duration of impact for the nonlinear

theory prediction. In Fig. 3 the linear and non­

linear theories predict four and five contacts,

respectively, between the impactor and shell with

R=50 cm. It is also found from Chen and Sun

(1985) that two and four contacts are predicted

by the linear and nonlinear theories, respectively,

for the composite plate. There are two contacts

predicted by the nonlinear theory during impact

for the R=20 ern and R= 10em shell, but a small

third contact is still predicted by the linear theory

for the R = 10 cm shell. The reason is that shell

modeled by the linear theory is more t1exible than

by the nonlinear theory. The total contact dura­

tion is longer for the flexible shell than for the

stiff one. For the shells, when the radius of curva­

ture is smaller, the separation between the

impactor and shell after the first contact is shor­

ter.

Figure 4 shows the relative motions of the

cylindrical shell of R=50 ern and the impactor

calculated by both linear and nonlinear theories.

We shall note that the maximum deflection at the

impact point is of the same order as the shell

thickness using the linear small deformation the­

ory, indicating that the large-deformation

assumption has to be imposed. A reduction in the

maximum deflection of the shell is predicted using

the large-deformation theory. Figure 5 presents

the effect of curvature on the deflection of the

impact point. The maximum deflections are

reduced with decreasing curvature, which stiffens
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the shel l.

The calculated strain histories, Guo for the shell

R=50 ern at Gaussian po int (0.2 15, 0. 143 ern) o n

the su rfa ce opposite to the impacted surface are

Table 2 Max imum failure index in each layer of the shell (bo ld letters for predicted damage)

Ply Maximum Failur e Ind ex

R=infinite R =50 ern R= 20 ern R =IO cm

No. linear non linear linear nonlinear linear nonlinear linear nonlinear

I 2.3367 2.1259 1.7608 1.393 1.0327 0.9416 0.9808 0.8612

2 1.9024 1.8607 1.3337 0.9534 0.8984 0.8951 0.8505 0.8109

3 1.7722 1.6022 1.2146 0.7083 0.7712 0.7627 0.7223 0.7332

4 1.372 1.0274 0.9543 0.6725 0.707 I 0.5754 0.6087 0.6145

5 1.0166 0.9937 0.6692 0.6078 0.6097 0.5106 0.5552 0.573

6 0.8925 0.8982 0.5247 0.5866 0.4541 0.3507 0.5308 0.5046

7 0.6921 0.8407 0.4607 0.4452 0.2849 0.2755 0.2016 0.395

8 0.5736 0.673 0.3698 0.3419 0.1635 0.2137 0.1258 0.3326

9 0.3154 0.5679 0.1332 0.2973 0.1289 0.2044 0.1089 0.2137

10 0.179 0.4789 0.2521 0.2209 0.1001 0.2369 0.1193 0.2008

II 0.1669 0.4077 0.1393 0.2147 0.1429 0.2488 0.122 0.2246

12 0.2537 0.3806 0.38 17 0.2963 0.3448 0.3107 0.4549 0.3392

13 0.6634 0.4957 0.3946 0.4458 0.5447 0.6638 0.8488 0.6701

14 0.4466 0.4432 0.5939 0.5309 0.4911 0.6534 0.6102 0.5462

15 0.7132 0.6545 0.5406 0.6 17 0.726 0.7165 0.9762 0.8769

16 0.8194 0.7196 0.7759 0.6223 0.8063 0.7938 1.0773 0.9381

17 0.6205 0.6674 0.8557 0.5236 0.6511 0.7426 0.8897 0.8321

18 0.9959 0.9435 0.933 0.8348 1.2308 1.0043 1.4244 1.0117

19 0.6597 0.7658 0.8771 0.7946 0.9834 0.9769 1.0238 0.928

20 1.1237 1.0732 1.129 0.993 1.6992 1.4678 2.0701 1.8217
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ently, this difference is attributed to the nonlinear

strain term {s.}.
Table 2 presents the maximum failure index in

each ply of the shell with different radii of curva­
ture. It is seen that the maximum failure index

calculated by the nonlinear theory is smaller than
by linear analysis. This means that stresses in the

shell are reduced by nonlinear analysis compared
with the linear analysis. Another interesting phe­

nomenon is that the distribution of the maximum
failure index according to the larger deformation
theory is more uniform than the small deforma­
tion theory.

8. Conclusion

In this study, the impact response and damage
behaviors are analyzed by using the nonlinear
large-deformation theory for a laminated com­
posite cylindrical shell under low velocity impact.

From this the following is deduced.
CD There is no significant difference for maxi­

mum contact force between the large and small
deformation theories except for a shorter duration
of impact for the nonlinear theory prediction.
Linear theory always predicts longer contact time

between the impactor and the shell. The reason is
that the shell modeled by the linear theory is more
flexible than by the nonlinear theory. The total
contact duration is longer for flexible shells than
for stiff ones. For the shells, when the radius of

curvature is smaller, the separation between the
impactor and shell after the first contact is shor­
ter.

@ The maximum strains and deflections do
not occur at the same time. The large deformation
theory predicts smaller deflection and bending
strain; however, the total strain (bending plus

membrane strain) is larger than that in the linear
case, in which the membrane strain yields signifi­
cant action.

@ The ply of the maximum failure index is
different for the infinite and finite curvature lami­

nates. The maximum failure index occurs at the
bottom surface of the laminated plate but at the
top for the laminated shell.

@ The maximum failure index calculated by

the nonlinear theory is smaller than by linear
analysis. This means that the stresses in the shell

are reduced by nonlinear analysis comparing with
the linear analysis. Distribution of the maximum

failure index according to the large deformation
theory is more uniform than the small deforma­

tion theory.
® Maximum impact response in a laminated

composite shell increases rapidly with the

increase of the impact load. When the maximum
deflection at the impact point is of the same order
as the shell thickness, the nonlinear analysis is

necessary. Otherwise, if small deformation theory
is used, it will lead to significant error in the
design of composite shells.
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